Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Spintronics has emerged as a key technology for fast and nonvolatile memory with great CMOS compatibility. As the building blocks for these cutting-edge devices, magnetic materials require precise characterization of their critical properties, such as the effective anisotropy field (Hk,eff, related to magnetic stability) and damping (α, a key factor in device energy efficiency). Accurate measurements of these properties are essential for designing and fabricating high-performance spintronic devices. Among advanced metrology techniques, time-resolved magneto-optical Kerr effect (TR-MOKE) stands out for its superb temporal and spatial resolutions, surpassing traditional methods like ferromagnetic resonance. However, the full potential of TR-MOKE has not yet been fully fledged due to the lack of systematic optimization and robust operational guidelines. In this study, we address this gap by developing experimentally validated guidelines for optimizing TR-MOKE metrology across materials with perpendicular magnetic anisotropy and in-plane magnetic anisotropy. While Co20Fe60B20 thin films are used for experimental validation, this optimization framework can be readily extended to a variety of materials such as L10-FePd with easy-axis dispersion. Our work identifies the optimal ranges of the field angle to simultaneously achieve high signal amplitudes and improve measurement sensitivities to Hk,eff and α. By suppressing the influence of inhomogeneities and boosting sensitivity, our work significantly enhances TR-MOKE capability to extract magnetic properties with high accuracy and reliability. This optimization framework positions TR-MOKE as an indispensable tool for advancing spintronics, paving the way for energy-efficient and high-speed devices that will redefine the landscape of modern computing and memory technologies.more » « lessFree, publicly-accessible full text available July 28, 2026
-
Free, publicly-accessible full text available August 1, 2026
-
Abstract As a promising alternative to the mainstream CoFeB/MgO system with interfacial perpendicular magnetic anisotropy (PMA),L10‐FePd and its synthetic antiferromagnet (SAF) structure with large crystalline PMA can support spintronic devices with sufficient thermal stability at sub‐5 nm sizes. However, the compatibility requirement of preparingL10‐FePd thin films on Si/SiO2wafers is still unmet. In this paper, high‐qualityL10‐FePd and its SAF on Si/SiO2wafers are prepared by coating the amorphous SiO2surface with an MgO(001) seed layer. The preparedL10‐FePd single layer and SAF stack are highly (001)‐textured, showing strong PMA, low damping, and sizeable interlayer exchange coupling, respectively. Systematic characterizations, including advanced X‐ray diffraction measurement and atomic resolution‐scanning transmission electron microscopy, are conducted to explain the outstanding performance ofL10‐FePd layers. A fully‐epitaxial growth that starts from MgO seed layer, induces the (001) texture ofL10‐FePd, and extends through the SAF spacer is observed. This study makes the vision of scalable spintronics more practical.more » « less
An official website of the United States government
